The ProtoDUNE Detectors at CERN

Thomas Kutter,
Louisiana State University
for the DUNE Collaboration

Joint Experimental-Theoretical Physics Seminar Fermilab August 18, 2017

Outline

- Introduction
- ProtoDUNE goals
- CERN infrastructure
- Cryostats
- Detector layout
 - Single phase LAr
 - Dual phase LAr

Common sub-systems

- Measurement program
- Charged particle beams
- Timeline
- Summary

Neutrino Oscillations

Neutrinos change flavor while propagating in vacuum/matter

→ Neutrinos have mass = evidence for physics beyond the Standard Model

Flavor

$$s_{ij} = \sin \theta_{ij}$$
; $c_{ij} = \cos \theta_{ij}$

Mass

$$u_{\mu}$$

$$\begin{bmatrix}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{bmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix} \begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{pmatrix} \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{pmatrix}$$

$$\theta_{23}$$
 = (45 ± 3)°
 $|\Delta m^2_{32}|$ = (2.52 ± 0.04)×10⁻³ eV²

reactor & accelerator

solar & reactor

$$\theta_{12}$$
 = (33.6 ± 0.8)°
 Δm^2_{21} = (7.50 ± 0.18)×10⁻⁵ eV²

$$\theta_{13}$$
 = (8.5 ± 0.15)°
| Δ m $^2_{31}$ | = (2.52 ± 0.04)×10⁻³ eV 2

CP violation phase: $\delta_{CP} \approx -90^{\circ}$

PMNS (Pontecorvo, Maki, Nakagawa, Sakata) — matrix describes mixing between flavor and mass eigenstates

Key open questions in neutrino physics

- Is there CP violation in the lepton sector?
- Which mass hierarchy is correct?
- What are the precise values of the neutrino mixing parameters?

v _e	U_{PMNS}						
I I							
\mathbf{v}_{μ}							
v_{τ} v_1 v_2 v_3							

Mixing	Neutrinos	Quarks	
θ_{12}	$(33.6 \pm 0.8)^{\circ}$	(13.04 ± 0.0)	5) º
θ_{23}^{-2}	$(45 \pm 3)^{\circ}$	(2.38 ± 0.06)) o
θ_{13}	$(8.5 \pm 0.15)^{\circ}$	$(0.201 \pm 0.0$	11)º
δ_{CP}	(-90 ?)°	(67±5)°	u U _{CKM}

- → Test 3 flavor paradigm
- → Measure symmetry between 2nd and 3rd generation
- → Search for new/unexpected physics
- What is the absolute neutrino mass scale?
- Are neutrinos Dirac or Majorana particles?

•

DUNE

DUNE Primary Physics Program

- 1) Long-baseline Neutrino Oscillation Physics
 - Measure the value of the CP phase δ
 - Identify the neutrino mass hierarchy
 - Perform precision neutrino physics:

Test the 3 flavor paradigm

Measure symmetry between 2nd and 3rd generation

Measure neutrino cross sections

2) Nucleon Decay

Target SUSY-favored mode: $p \rightarrow K^+ v$

3) Supernova burst and astro-physics

Galactic core collapse supernova, best sensitivity to $\nu_{\rm e}$

DUNE and LBNF Overview

- Four identical caverns/cryostats deep underground
- Staged approach to four independent 10 kt LAr detector modules
- Single-phase and dual-phase readout under consideration

LAr TPC Technologies

- Ionization: \sim 60,000 e⁻/cm for mip (for E \approx 500V/cm)
 - → Provides detailed imaging, calorimetric and particle identification (PID)
- Scintillation (128nm): \sim 24,000 γ /MeV (for E \approx 500V/cm)
 - \rightarrow offers event trigger (t_0) information + improved calorimetric information

Sample event displays

- → Excellent precision and 3D track/shower information for single and dual phase LAr TPCs
- → Liquid argon offers large target mass and is scalable

Single-Phase LAr Detector

Readout of

Ionization charge and

scintillation light

Detector mass [kt]						
total	17.1					
active	13.8					
fiducial	11.6					

<u>Time Projection Chamber:</u>
wire Anode Planes (APAs)
induction + collection wires
2 cathode planes at -180 kV

4 drift regions: 3.6m drift each

Photon Detection System integrated in APAs to measure non-beam event timing

Dual-Phase LAr Detector

Ionization charge extracted into Ar gas phase charge amplification via large electron multipliers (LEM) before readout

[strengths: 2 dimensional charge collection, robust S/N with tunable gain, insensitive to microphonic noise, different systematics]

→ If demonstrated at large scales, could be used as alternative design for 2nd or subsequent 10 kt far detector modules

LArTPC Development Path

Fermilab SBN and CERN neutrino platform provide a strong LArTPC development and prototyping program

LArTPC Development Path

Fermilab SBN and CERN neutrino platform provide a strong LArTPC development and prototyping program

ProtoDUNE High Level Goals

Detector Production:

- Establish production process and quality assurance of <u>full scale</u> detector components
 - mitigate associated risks and validates cost for DUNE far detector

Installation:

Test of interfaces between detector elements

Operation: (Cosmic ray data)

- Validate detector design and (long term) detector performance
- Achieve required LAr purity

Test beam data:

Assess detector physics response and systematic uncertainties

ProtoDUNE High Level Goals

Detector Production:

- Establish production process and quality assurance of <u>full scale</u> detector components
 - mitigate associated risks and validates cost for DUNE far detector

Installation:

Test of interfaces between detector elements

Operation: (Cosmic ray data)

Validate detector design and (long term) detector performance

Test beam data:

Assess detector physics response and systematic uncertainties

To be most relevant for DUNE requires charged particle beam to cover energy range and particle types as expected for DUNE ν interactions

ProtoDUNE Charged Particle Requirements

Expected secondary particle spectra in DUNE far detector; uses ν -beam flux as input

Uses GENIE to simulate interactions (Ar 40 cross section) and final states

Relevant individual charged particles to be studied in CERN beam test

→ Energy ranges of : sub-GeV to several GeV

NOTE: particles embedded in showers → study topologies

→ Affects particle containment and detector size

Detector Size/Dimensions

Engineering:

test multiple full-scale components assembled into functional sub-unit

Measurement:

energy bias studies require shower containment

Transverse: 2.1 m Longitudinal: 5.3 m 3 APA wide TPC

envelope

→ active volume <u>size requirements</u>:

 $6m \times 5m \times 5m$

→ 2 drift volumes (3.6m each))

CERN Infrastructure (EHN1)

ProtoDUNE Milestones

ProtoDUNE approved at CERN

10/2015 04/2016

09/2016

11/2016

4/2017

fall/2017

time

Detector installation

Cryostat Technology

Membrane cryostat (well established/commercial technology)

→ cryostats completed 8/2017

- Stainless steel primary membrane
- 2 Plywood board
- **3** Reinforced polyurethane foam
- Secondary barrier
- **6** Reinforced polyurethane foam
- 6 Plywood board
- **7** Bearing mastic
- **8** Steel structure with moisture barrier

Interior of liquefied natural gas tanker ship

ProtoDUNE Cryostats

Use nearly identical cryostats for single and dual phase protoDUNE

→ ProtoDUNE cryostats serve as prototypes for the DUNE 10 kt cryostats

Single Phase ProtoDUNE TPC

Detector components are <u>same</u> as for DUNE far detector

Keep option to reduce drift distance to 2.5m (reduced space charge effects)

Expected cosmics rate:

- \sim 10 kHz
- → useful for detector performance studies

Anode Plane Assemblies (APA)

4 wire planes (4.8 mm spacing)

Function	no.	pitch [mm]	orientation	potential [V]
Collection (x)	960	4.79	vertical	820
Induction (V)	800	4.67	35.7° - wrapped	0
Induction (U)	800	4.67	35.7° - wrapped	-370
Grid	960	4.5	vertical	- 665

Wire frame detail

Intermediate "combs" support the long wire spans

Anode Plane Assemblies (APA)

4 wire planes (4.8 mm spacing)

Function	no.	pitch [mm]	orientation	potential [V]
Collection (x)	960	4.79	vertical	820
Induction (V)	800	4.67	35.7° - wrapped	0
Induction (U)	800	4.67	35.7° - wrapped	-370
Grid	960	4.5	vertical	- 665

Wire frame detail

→ DUNE far detector requires 150 APAs per 10kt module

Cathode Plane Assembly (CPA)

HV bus provides uniform voltage

6 interconnected CPA columns (V_{bias} = - 180kV)

- Resistive material (G10 + kapton foil)
- →robustness of variety of materials and coatings to sparks studied in test setup in air and LAr at CERN

 \sim 240 lbs per column

High Voltage

Common to both NP02 and NP04

- Required cathode HV for ProtoDUNE dual phase LAr is 300 kV
 - → 0.5 kV/cm drift field (over 6m)

COMSOL simulation of fields around feedthrough

FT test at CERN with 300kV Heinzinger PS

DUNE dual phase requirement: 600 kV → being developed with industry

Field Cage (FC) + Resistive Divider Chain

Provides uniform electric drift field

Key elements common to both NP04 and NP02

Constructed from

FC endwa

Top+ bottom:

Ground plane

FC (20 cm separation)

- roll formed Al profiles and
- Plastic caps to prevent discharges
- R-divider chain steps voltage

by 3 kV between profiles

- →NO sparks observed up to 100kV
- →occasional sparks above 80 kV if bubbles present

Dual Phase ProtoDUNE TPC

Dual Phase ProtoDUNE TPC

Charge Readout Plane (CRP)

ProtoDUNE Cold Electronics

TPC electronics to be located close to wires resp. charge readout plane to minimize noise

Inaccessible electronics boxes

Cold electronics directly attached to APA (2560 wires):

1 APA \rightarrow 20 FEMB (2560 ch/20 = 128 ch)

- Analog Mother board 128 wires IN
- → Multiplexed to 4 OUTputs
- Preamplifiers with shaping circuit

Dual phase:

Cold electronics in chimney (7680 channels): 16 channel ASIC, 1200 fC dynamic range

→ No zero suppression; no data compression

<u>Dual phase</u>: accessible cold electronics

Photon Detection System (PDS)

 $\underline{Purpose}$: provide t_0 for non-beam events, improved event reconstruction

Challenge: detection of LAr 128 nm (VUV) scintillation photons

Technique: use TPB to shift wavelength to \sim 430 nm

Single phase:

TPB coated acrylic bar coupled to wave shifter

Dual phase:

8" Hamamatsu cryogenic PMTs

Coated with TPB

10 photon detection panels embedded in each APA

ProtoDUNE DAQ

ProtoDUNE Beam trigger rate: ∼25 Hz, cosmics: ∼10kHz

TPC: 6 APA (2560ch. Each) → 15,360 chan.; 2 MHz 12 bit ADC

→ raw pre-trigger rate: 480 Gb/s

PDS: 240 chan.; 150 MHz 14 bit ADC

 \rightarrow 10 kHz self-triggered cosmic data rate: \sim 1.1 Gb/s

→ Very significant data quantities to be read out **DUNE**: SNe bursts require \sim 10s continuous readout

Computing

Common to both NP04 and NP02

- Transfer raw data from online disk buffer to CERN EOS disk and onwards to tape (CERN: CASTOR; FNAL: ENSTORE) and other end-storage systems
- Collaboration of protoDUNE computing group with CERN-IT and FNAL-SCD

Integration, Testing and Installation

- Integration and tests of APA, CE and PD in clean room (dedicated cold box)
- The material for detector installation is brought to a clean room buffer and then via TCO into the cryostat
- Retest components once installed in final position

Installation in Cryostat

→ Installation sequence same/similar as for DUNE 10kt modules

Slow Control System

- Integrated control of level meters
- temperature and pressure sensors
- Gas analyzers
- Purity monitors
- Strain gauges
- Extensive network of sensors to completely characterize behavior of CRP
- Cryocamera

Common to both NP02 and NP04

High accuracy (100 um) and standard (1 mm) level meters

Cosmic Muon Tagging

Simulated cosmics in single phase TPC

Selected/tagged sub-sample	of	cosmics
serve for calibration		

- LAr purity analysis
- Map field non-uniformities (track distortions)
- Study stopped muons + Michel electrons

→muon tagger (from Double CHOOZ):

• 3 (movable) panels, each composed of 4 units

• \sim 2.5 cm spatial resolution

TPC (phase)	Drift time [ms]	Readout wind. [ms]	Expec. μ /readout
Dual	4	\sim 8	80
single	2.25	~ 5	50

Increased readout window to identify track fragments in main event drift time

Muon Tagging

Event Reconstruction + Classification

ProtoDUNE simulated

2.5 GeV/c pion event

<u>Convolutional Neural Network (CNN)</u> Output: classification of individual hits as MC truth: EM like, track like

High Precision image of particle interaction

→ use machine learning technique developed in field of computer vision: <u>CNN</u>

Simulated sample of 4 GeV/c pions in ProtoDUNE:

→ Have CNN also successfully applied to dual phase and LAriat data

Anticipated Measurements

Pions/protons:

- Validate reconstruction tools, particle identification and simulations
 - → Measure calibration constants (energy)
- Measure π^+/π^- differences and topological shower differences (\sim 1 GeV)
- Measure pion interaction cross sections
- Measure π^0 for NC backgrounds and calibration

• Study e- γ separation (\sim 1-2 GeV)

Electrons:

Study e- γ separation (<2 GeV);

Calibrate em showers (sub GeV – multi-GeV)

Study gamma conversion distance

Muons:

• Study Michel electrons, calibrate Bethe-Bloch, study μ - capture on Ar

Charged Particle Beams

Thanks to L. Gatignon (CERN), N. Charitonidis (CERN)

Schematic for H2 beamline layout (H4 has one additional bending magnet)

beam instrumentation:

- Profile monitor (x,y)
- Particle tracking
- Momentum measurement
- → Fiber tracker

Particle ID:

- → Gas Cherenkov counters
- → TOF counters

Performed complete simulation of H2 and H4 beamline particle transport including

- Beamline monitors
- Detector beam window
- shielding

- \rightarrow Mixed hadrons (π , p, K and e) rates below 1 GeV/c are low
- → Relatively pure electron

Beam Window

From Fluka/G4 simulations:

→ Lower E hadrons and electrons require full penetration to make it unscattered into active detector volume

Primary membrane left intact

→ Beam plug test in progress at FNAL

Beam composition + data sets

Positive beam

K decay causes depletion of lower energy K samples

 \rightarrow long beamline: \sim 37m

Р	# of	$\#$ of e^+	$\#$ of K^+	$\#$ of μ^+	# of p	$\#$ of π^+	Total #	Beam Time
(GeV/c)	Spills						of Events	(days)
1	70K	84K	≈ 0	70K	689K	625K	1.5M	19.4 days
2	16K	19K	9K ∕	36K	336K	572K	1.0M	4.4 days
3	13K	16K	26K	17K	181K	540K	780K	3.6 days
4	11K	13K	19K	16K	107K	510K	660K	3.1 days
5	11K	13K	29K	13K	96K	510K	660K	3.1 days
6	11K	13K	36K	12K	94K	510K	660K	3.1 days
7	11K	13K	42K	8K	87K	510K	660K	3.1 days
Total	143K	171K	161K	172K	1.6M	3.8M	5.9M	39.7 days

Momentum Bins	# of Spills per Bin	$\# e^+$ per Bin	Beam Time per Bin
(GeV/c)			(days)
0.5, 06, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7	5000	300K	1.4

Key assumptions:

- Trigger rate: 25 Hz
- Electron discrimination (rate reduced to 0.5 Hz) for hadron beam
- 50% data collection efficiency

Total estimated beam measurement time is few months for positive and negative particles

Timeline

Approximate schedule summary from detailed project schedule

Other News

While ProtoDUNEs progress quickly at CERN, LBNF/DUNE is moving equally fast

Summary

- Provided an overview of the motivation, sub-components and measurements of ProtoDUNE LAr single and dual phase detectors
- > protoDUNE detectors are an important engineering milestone to
 - → perform <u>full scale</u> detector component tests in LAr
 - Validate performance of sub-systems (TPC,PDS, electronics) and their integration and installation
 - help to establish multiple production sites and QA procedures
- → measure <u>charged particle response</u> of full scale detector components
 - → validate MC simulations and particle interaction models
 - measure detector systematics
 - provide calibration data samples for future DUNE far detector
- Follow aggressive schedule requires close and effective collaboration
- → Have strong international team on the ground

